Haldane's rule and X-chromosome size in Drosophila.
نویسندگان
چکیده
The "dominance theory" of HALDANE'S rule postulates that hybrids of the heterogametic sex are more likely to be inviable or sterile than the homogametic sex because some of the epistatic incompatibilities contributing to postzygotic isolation behave as X-linked partial recessives. When this is true, pairs of taxa with relatively large X chromosomes should require less divergence time, on average, to produce HALDANE'S rule than pairs with smaller Xs. Similarly, if the dominance theory is correct and if the X chromosome evolves at a similar rate to the autosomes, the size of the X should not influence the rate at which homogametic hybrids become inviable or sterile. We use Drosophila data to examine both of these predictions. As expected under the dominance theory, pairs of taxa with large X chromosomes (approximately 40% of the nuclear genome) show HALDANE's rule for sterility at significantly smaller genetic distances than pairs with smaller X chromosomes (approximately 20% of the genome). As also predicted, the genetic distances between taxa that exhibit female inviability/sterility show no differences between "large X" vs. "small X" pairs. We present some simple mathematical models to relate these data to the dominance theory and alternative hypotheses involving faster evolution of the X vs. the autosomes and/or faster evolution of incompatibilities that produce male-specific vs. female-specific sterility. Although the data agree qualitatively with the predictions of the dominance theory, they depart significantly from the quantitative predictions of simple models of the dominance theory and the other hypotheses considered. These departures probably stem from the many simplifying assumptions needed to tractably model epistatic incompatibilities and to analyze heterogeneous data from many taxa.
منابع مشابه
High-Resolution Genome-Wide Dissection of the Two Rules of Speciation in Drosophila
Postzygotic reproductive isolation is characterized by two striking empirical patterns. The first is Haldane's rule--the preferential inviability or sterility of species hybrids of the heterogametic (XY) sex. The second is the so-called large X effect--substitution of one species's X chromosome for another's has a disproportionately large effect on hybrid fitness compared to similar substitutio...
متن کاملThe genetic basis of Haldane's rule and the nature of asymmetric hybrid male sterility among Drosophila simulans, Drosophila mauritiana and Drosophila sechellia.
Haldane's rule (i.e., the preferential hybrid sterility and inviability of heterogametic sex) has been known for 70 years, but its genetic basis, which is crucial to the understanding of the process of species formation, remains unclear. In the present study, we have investigated the genetic basis of hybrid male sterility using Drosophila simulans, Drosophila mauritiana and Drosophila sechellia...
متن کاملDominance, epistasis and the genetics of postzygotic isolation.
The sterility and inviability of species hybrids can be explained by between-locus "Dobzhansky-Muller" incompatibilities: alleles that are fit on their "normal" genetic backgrounds sometimes lower fitness when brought together in hybrids. We present a model of two-locus incompatibilities that distinguishes among three types of hybrid interactions: those between heterozygous loci (H(0)), those b...
متن کاملSex-linked hybrid sterility in a butterfly.
Recent studies, primarily in Drosophila, have greatly advanced our understanding of Haldane's rule, the tendency for hybrid sterility or inviability to affect primarily the heterogametic sex (Haldane 1922). Although dominance theory (Turelli and Orr 1995) has been proposed as a general explanation of Haldane's rule, this remains to be tested in female-heterogametic taxa, such as the Lepidoptera...
متن کاملSex chromosome translocations in the evolution of reproductive isolation.
Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane'...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 147 4 شماره
صفحات -
تاریخ انتشار 1997